

Problems associated with the Crab Cavity

Crab Cavity Meeting 14/4/2005

Sources of error

- HOM/LOM
- Microphonics
- Cavity Asymmetry
- Voltage Error
- Phase Error
- Differential Phase Jitter

Order of modes in an elliptical cavity

KEKB Crab Cavity

Squashed Crab cavity for B-factories

(K. Akai et al., Proc. B-factories, SLAC-400 p.181 (1992).)

Multicell cavities

Difficult to damp LOMs in the middle cells.

Resonant bandwidth

Large bandwidth reduces problems due to microphonics

Cavity Asymmetry

 Magnetic field as seen by the middle of the bunch as a function of position across the cavity.

Voltage Stability

For optimum cell length

 θ_{crab} is proportional to the maximum magnetic field in the cavity

voltage error induces errors in bunch rotation

$\frac{\theta_c}{2}$	
	θ_{error}

Crossing Angle	Voltage Stability
2mrad	33%
10mrad	7%
20mrad	3%

(using ILC parameters for 2 % luminosity loss)

Absolute phase error: Transverse deflecting dipole mode

 Magnetic field as seen by front, middle, and back of the bunch as a function of position across the cavity for phase error.

Absolute phase error: Transverse deflecting dipole mode

Phase Jitter

Crabbed Crossing Angle with Phase jitter

Effective head-on collision

Phase jitter for a 2% luminosity loss

	1.3GHz	3.9GHz
Crossing		
Angle	Phase Error	degrees
2mrad	0.222	0.665
10mrad	0.044	0.133
20mrad	0.022	0.066

Loss of luminosity with jitter for a 20mrad crossing angle

Crab cavity phase control system

Daresbury Experiment

Experimental plan

- Phase stability experiment
 - Verify ability to measure phase error
 - Correct phase using feedback loop
 - Test on ERLP SRF cavities

Conclusion

- LOM damping in multi-cell cavities will be looked at
- Voltage Stability will not be a problem but voltage asymmetry due to microphonics may be.
- The biggest single obstacle will be phase jitter between the cavities